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Outline

• Review midterm

• Review last lecture
– Power series solutions/Frobenius Method

• Apply Frobenius method to Bessel’s 
equation
– Obtained indicial equation last week

– Get first solution

– Differences in second solution

– Definition of Bessel Functions
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Review Power Series Solutions

• Look at following equation and proposed 
power series solution

• Requires p(x), q(x) and r(x) that can be 
expanded in power series about x = x0
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Review Getting the Solutions

• Manipulate series to get single 
summation with common power of x 
and common limits
– Use substitution of exponents to get 

common exponents

– Remove terms from summations, giving 
individual terms, plus a common sum
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Review Getting the Solutions II

• Result of manipulating sum is series 
that has form  mcmxm = 0
– Can only satisfy this equation if all cm = 0
– The cm usually involve combinations of the 

original an terms
– This gives equations between an and a 

coefficients with subscripts n-1, n-2, etc.
– Initial few coefficients unknown, used to 

match boundary conditions
– Can get all original an in terms of these 

original coefficients
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Review Frobenius Method

• Applied to differential equation below
• Usual power series method inapplicable

• Solution similar to previous power 
series (with x0 = 0) except for xr factor
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Review Frobenius Method II

• Differentiate proposed solution two times
• Get power series for b(x) and c(x)
• Substitute into original equation
• Set coefficient of lowest term, xr, to zero
• This gives indicial equation, a quadratic 

equation with two roots for r, r1 and r2

• Need two solutions but have different 
second solution depending on r1 and r2

– Same, differ by integer, differ by noninteger
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Review Frobenius Method III

• First and second solutions y1(x) and y2(x) 

• Double root
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Bessel’s Equation

• Arises in mechanical and thermal 
problems in circular geometries

• The value of  is a known parameter

• Solve by Frobenius method 
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Bessel’s Equation II

• Plug solution and derivatives into 
Bessel’s equation and rearrange

  0)()1)((
0

22

00

 
















n

rn
n

n

rn
n

n

rn
n xaxxarnxarnrn 

  0)()1)((
0

2

0

2  











n

rn
n

n

rn
n xaxarnrnrn 

 

  0)(

)(

2
2

0

22

0

2

0

22
































n

rn
n

n

rn
n

n

rn
n

n

rn
n

xaxarn

xaxarn












4
2

3
1

2
0

rr

r

xaxa

xaBoth

11

Bessel’s Equation III

• Final arrangement gets indicial equation
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• Indicial equation (r2 – 2 = 0) roots 
– Solution gives double root if  = 0
– Roots differ by an integer for integer but 

not for non-integer 
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Bessel’s Equation IV

• With r = , we must have a1 = 0
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• With a1 = 0, all an with n odd vanish
• Unknown coefficient a0 from initial 

conditions on the differential equation

• For coefficients of xn+ to vanish 
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Bessel’s Equation V

• Get new subscript, m = n/2 (n = 2m)

• Test general result proposed below

• Get even coefficients, a2m, in terms of a0
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Bessel’s Equation VI

• Compute a2m/a2m-2 from general equation

• Result matches equation from last chart

• Now have general result for first root of 
indicial equation, r = 
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Bessel’s Equation VII

• For integer  = n, multiply a2m by n!/n!

• Pick a0 = 1/(2nn!) to give convenient 
functions for tabulation

• Use gamma functions to get similar 
result for non-integer 

)!(!2

!)1(

!

!

)1)(2()1)((!2

)1(
2

0
2

0
2 nmm

na

n

n

nnnmnmm

a
a

m

m

m

m

m 










)!(!2

)1(

)!(!2

!)1(

!2

1
2222 nmmnmm

n

n
a

nm

m

m

m

m 






 

16

Gamma Functions

• Function (x) generalizes factorials to 
non-integer arguments (Appendix C)
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• Definition

• Analog of (n+1)! = (n+1)n!
• For integer x = n, (n+1) = n! = n(n)

• Application to Bessel coefficients below

)1(!2

)1()1(

)1)(2()1)((!2

)1(
2

0
2

0
2 











 mm

a

mmm

a
a

m

m

m

m

m


17

Bessel Functions

• Solutions use specific definition of a0 = 
1/[2(n+1)] for tables giving
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• Look at integer and non-integer 
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Bessel Functions II

• Use n for integer values of 
• For integer x, (x + 1) = x!
• Bessel function, first kind, integer order

• First few terms (we chose n  0)
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• Plots for n = 0,1, and 4 on next chart
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Bessel Functions III
Bessel Functions of the First Kind for Integer Orders
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Bessel Functions IV

• Back to Frobenius method for second 
solutions in three cases
– n =  = 0, the double root
– Integer  = n  0, roots differ by an integer, 

J-n(x) = (-1)nJn(x)
– Non-integer , easiest case, J and J- are 

two linearly independent solutions
• General case for second solution
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Bessel Functions V

• Substitute proposed second solution into 
original Bessel’s equation (here r = -n)
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Bessel Functions VI

• Result from substitution
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Bessel Functions VII

• Complete rearrangement, get derivative
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Bessel Functions VIII

• Now substitute equation for derivative into 
general series equation
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Bessel Functions IX

• Substitute derivative, rearrange sums
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Bessel Functions X
• Equation before choosing n = or  0
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Bessel Functions XI

• Result for n = 0 with new sum terms

  04
)!1(!2

)1(

3
2

22
21

1
22

2




 










m

m
mm

m
m

mm

xAAmxAxA
mm

x

4

1
0414

)!11(!12

)1(
2222)1(2

1





 AAA

• We must have A1 = 0 for x1 term to vanish
• Look at x2 coefficient next

• First sum has only even powers of x
• Look at xm coefficients for odd m
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Bessel Functions XII

• Copy basic equation below
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Bessel Functions XIII

• Use usual power-series application to 
infer general equation for A2m

• Get following equation for A2m

• Both sums now have x2 times index

• Set coefficients of x2m = x2k to zero
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Bessel Functions XIV

• Do these two equations satisfy the previous 
equation for A2m in terms of A2m-2?

• General result 
for A2m
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Bessel Functions XV

• Gives correct result for A2m
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Bessel Functions XVI

• So we now have second solution for n = 0
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• We can use any combination of two linearly 
independent solutions for a second solution

• Define Y0(x)= 2[y2(x) + ( – ln 2)J0(x)]/
•  = Euler constant which is limit as x  

of the sum 1 + 1/2 + 1/3 + … + 1/x – ln x
• Value of  = 0.5772156649…
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Bessel Functions XVII

• This gives Y0(x) as follows

• Next step is getting second solution for 
integer n  0

• Solution proceeds in similar manner
• In this case we must determine if kln(x) 

term is required in second solution
• See notes for full details
• As before define Yn(x)
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Bessel Functions XVIII

• Yn(x) is defined as follows for n  0

• General solution to Bessel’s Equation is 
y(x) = AJn(x) + BYn(x)

• Plot of Yn(x) on next chart shows that Yn(x) 
goes to minus infinity as x goes to zero
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Bessel Functions XIX
Bessel Functions of the Second Kind of Integer Order
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Bessel Functions XVIII

• If we want a solution for x = 0 we cannot 
use Yn(x) so a general solution that 
includes x = 0 is y(x) = AJn(x)

• Formally define Y(x) for non-integer 
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• In limit as n approaches an integer, this 
definition approaches Yn(x)
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Bessel Function Summary

• Bessel’s equation, x2d2y/dx2 + xdy/dx + 
(x2 - 2)y = 0, main applications are to 
problems in radial geometries.

• The general solution to Bessel’s 
equation is y = C1J(x) + C2Y(x) where 
C1 and C2 are constants that are 
determined by the boundary conditions 
on the differential equation.
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Bessel’s Equation Summary II

• J(x) and Y(x): Bessel functions, order 
, first and second kind, respectively.
– have oscillatory behavior
– found in various tables and computer 

library solutions
– At x = 0, J0(x) = 1 and Jn(x) = 0
– As x approaches zero, Yn(x) approaches 

minus infinity
• Can transform some equations into the 

form of Bessel’s equation. 
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Calculating Bessel Functions

• Excel functions for integer n
– BESSELJ(x, n) computes Jn(x)
– BESSELY(x, n) computes Yn(x)
– BESSELI(x, n) computes In(x) = i-nJn(ix)
– BESSELK(x, n) computes Kn(x) = i-nYn(ix)

• Matlab has similar functions
– besselj, bessely, besseli, and besselk
– Order of arguments reversed (nu, x)
– Handles non-integer 
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More on Bessel Functions

• Formulas for integrals and recursion 
equations

• Computational approaches

• G. N. Watson, A treatise on the Theory 
of Bessel Functions

• Abramowitz and Stegun, Handbook of 
Mathematical Functions, National 
Bureau of Standards, 1964
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Frobenius Method Summary

• The general form of the Frobenius 
method solution is the infinite series y(x) 
= xr(a0 + a1x + a2x2 + ….)

• The general solution is differentiated 
and substituted into the original 
differential equation.  Setting the 
coefficients of each power of xn equal to 
zero gives equations that can be solved 
for r and the ai coefficients

• Get coefficients as in power-series
42

Frobenius Method Summary II

• Set coefficient of xr = 0 to get quadratic 
equation for r (indicial equation)

• Cases for roots of indicial equation
– the two roots are the same
– roots differ by an integer (other than zero)
– different and difference is not an integer

• First solution is always  y1(x) = xr(a0 + 
a1x + a2x2 + ….) where r is larger 
indicial equation root
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Frobenius Method Summary III

• Second solutions depend on 
indicial equation roots
– Roots differing by a non-integer: y2(x) = 

xR(A0 + A1x + A2x2 + ….), where R is larger 
root of indicial equation

– Double root: y2(x) = y1(x) ln(x) + (A1x + A2x2

+ A3x3 + ….)
– Roots differing by an integer: y2(x) = k y1(x) 

ln(x) + (A0 + A1x + A2x2 + A3x3 + ….) where 
k may be zero

• Get Ai as in power series method
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What Have We Learned?

• Power series method and Frobenius 
method used to solve some equations
– Application mainly in theory
– Give analytical solution

• You know solution to Bessel’s equation
– y(x) = AJ(x) + BY(x)
– Paramater  given in equation
– A and B fit boundary conditions
– B = 0 to apply solution at x = 0
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What Can We Do With This?

• Bessel functions in Fourier series
– Will use in ME 501B to get solutions to 

differential equation in radial geometries

• Other Bessel functions
– Homework problem on In(x) = i-nJn(ix)
– Companion function Kn(x) = i-nYn(ix)
– Solutions to similar equations

• Transform differential equations into 
Bessel’s equation


